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STABILITY OF PLANAR HU’!.TIFLUID PIASHA EQUILIBRIA BY ARNOLD’S HETHOD

Dar~’1 D. Holml

ABSTRACT. A method developed by Arnold to prove nonlinear
stabilltv of certain steady staten for ideal incompressible flow in
two dimensions io ●xtended to the case of balotropic, compressible,
multifluid plasm~s. This ●xtension is accomplished by constructing
conme~ed functional derived from degeneracy of Poim~o~ brackets.
The results mre applied to planar shemr fl>ws of the plasma.

1. INTRODUCTION. Arnold [1965m,1969] formulates ● method for ●stabllshin~

sufficient conditions for stabillty of statitinary (i.e., nte~dy) motions of ●n

ideal fluid ●8*inat disturbances of small but finite ●mplitude. S;sbzlity 18

●stablished by finding a priori ●stimates (expresmed in a certain norm

depending on the problem being considered) that place bounds on the tcbsequent

size of the disturbances, ●s they develop -n time. These ●stimate6 apply f“r

as long a~ the solutions of the disturbed flow continue to exist. When such

●atimatea have b?en ●stablished, the stationary motions ● re said to be “stable

by Arnold-s ❑ethod.”

Arnold’s method 1s based on the construction uf a conserved functional (a

conotant of the motion) that has ● #iven st~tionory flow ●P its ●xtremum

(critical point). If this extremum 1s ● true ❑inimum or maximum relative to

nearby flows within ● neighbo~hood who-e topology mutt be determined for ●ach

problem, then the corre-pondint staticmary flow is stable in that topology.

Such mtability can be understood geometrically by ● heuristic ●rgument.

Imagine the level curfaces of the conserved functional in function space, in ●

neighborhood of the point repre-entimg ● given stationary flow. For a maximum

or minimum, these level surfaces will be nested ●nd closed, surrounding the

●quilibrium point. If the stgady state flow is disturbed at some jnatant, the

corresponding phame point in the function space will ~hift onto ● nearby Awel

1980 Ilathematicn Subject Classifications: 58F05, 58F1O
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surface &nd will remain on it throughout the ouboequent time of motion, by

conaterv~tion of the functional. If ● priori ●stimates can establlsb that the

distance in ●n ●ppropriate notm from the ●quilibrium point to the nearby level

surface upon which the disturbed motion takes place subsequently remains

bounded, then the ●quilibrium point is Etable by Arnold’s ❑ethod.

Bounded in ● certain norm, motionm stable by Arnold’s ❑ethod are also

ntable in the sense of Lyapunov: for each E > 0 there ●xiuts a 6 > 0, such

that if che initial values ● re disturbed by less than 6 (in the norm

determined by the a priori entimates) then the solution deviates from a

specified tolution (e.g. , the stationary one) by less th~n c during the entire

subsequent motion. Having found by Arnold’s .nethod a norm 1-1 in which the

perturbation 6X0 ● t time zero, ●nd 6x ●t time t eatisfy 16x1 : K16xol, with

K ~ 1 and for ●ll time, one ❑ay choone 16XOI < 6; then 16xI < & = K;. This 18

the type of stability result derived by Arnold’s ❑ethod.

Arnold [1965s,1969] studies incompressible planar fluld motion, where

stability is ●stablished, among other ●xamples, in the case of stationary

flowe aatiafying Rayleigh’- inflect~on point ctlterlon. Dikil [1965] shows

this type of stability for incompressible zonal circulation on a spherical

sur~ace, provided the stationary flows there sstlsfy ● spherical analog of

Rayleigh’a criterion. Hulm ● t ●l. [1983] ●stabliah conditions for stabillty

by Arnold’s method for compressible (barotropic) planar flows. Abarbanel

● t ●l. [198L] prove stsbility criteria by this method for two and three

dimenrlonal, ctratifi~d, incompressible flows, with buoyancy ●ffects Included

Helm et al. [1984] de-l with ar.ldit nal example~ of ntabllity of stationary

flow, by thi~ method: three dimenn”onal adiabatic compre?nible hydrodynam~cs,

❑agnetohydrodynami CS, and ❑ultifluid plarma dynamicm; twc dimensional

❑a8netohydrodynami et, both compressible ●nd incompressible; Polssol,-t’lasov,

●nd Ilaxwell-Vlaoov pla~ma ●quation~; ●nd multilayer quasigeo~.trophic systems

Wan ●t ●l. [1986] prove ctabillty conditions for incompreBslble circular

vortex ~atchen in the pl~ne by a method similar to Arnold’s, but requiring

more delicat- ●nalysi-.

Arnolc’s stability method is ●m-ambled fr~m several well known ●lements.

●xtremal principles for conmerved functional, definitenenm in reign of their

s~cond %sriations, and convexity ●rguments thst ettabllsh ● priori ●stimaten.

However, th~ success of this method in fluid dynamics derive- from ● less

familiar element: tieganerhcy of Poisson brack~ts. De~eneracy of PoiBson

bracket- for 4 given dynamical systam means that c~rtain quantities - the

so-cslled “CssimirB”’ - are constants of the motion for ●y Hamiltonian. Thu~ ,

thm Poitmon Lrackat vanisheB when taken betwemn a Casimlr ●nd sny other

quantity dapaadins upon the Jiven dynamical variablm-. Canimirs ●re discribcd
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from a geometrical viewpoint with finite-dimensional ●xamples, in Weinstein

[1984], in these proceedings. Construction of degenerate Po18son brsckets for

varioua fluid theoriem ●nd their ●anociaticn to certain Lie algebram is

treated in Haraden, Ratiu, snd Weinstein [1983], Helm ●nd Kupe:dm.nidt[1983],

and Helm, Kupermhmidt, ●nd Levemore [1983]. Explicit derivation of Canimirs

for Poismon bracketn in fluid theories is dlmcummea in Rat*u [1984], in these

proceedings.

Arnold”

functional.

●nt3entially

that oeeks

conatralned

of motion.

B stability method uses the CaLimirs to cona~u”--*. conserved

It imposes the Canimira (as well ●s other constants oi ❑otion)

an LagranSe ❑ultiplier con~traintc for ● variational prlnclple

conditional critic;ll points of the ●ner8y. Denote by H thip

●nergy, BO that H la the ●um of the energy ●nd ce?tain conatantm

For rtat~onary states, the first variation af H vanimhefi, i.e., H

has a critical point, for ●ppropriately chosen Lagrarge multipllera. Thir

crltlcal point ia locally ● minimum, a maximum, or ● maddle point, dependln8

on whether the second variation of H ●t the crit.cal point is, respectively,

pornltlve definite, ne8atlve definite. or i~definit~.

Under certain conditions on the atativnary states, the ●econd variation

at the crltlcal point may be definite in 8i8n. Under tneae conditions, the

second varlatlon deflnea a norm, whxch induces ● weak type of atabillty.

called “formal ntabllity.” Formal atabili”v Implies l~nearizei stability

●gainst infinitesimal dlcturbances ●t the critical point, since the norm of

the rnecond variation la preserved by the linearized ●quatlona. This is only

neutral etabxlity, though, since the speccrum (Jf the linearized Ideal f:uid

equations llea on the ima8inary axia. Formal stabillty in fluidn tnd placmat

had been considered by n number of ●uthorm, ●vcn before Arnold [’965a]. For

plaama theory, reel ●.8., Kruskal bnd Oberman [1958], Newcomb (In Apppndlx I

of Bersteln, ●t ●l. [196L] ), ●nd Rosenbluth [ 196Y] . For incompre-alble planar

ct.ear flow~, forma: stahlllcy is

[1971], ●nd, mere recently, for

● t ●l. [1982].

Fortunately, the condltlonu

diccuaaed l.n ~ geophysical context by Blumen

multllayer quasigeostropic flowm, t:. Benzl

on the staticnkry statea that 81ve fo-mal

stabtllty via definitone-s in sisn of the second variat:o~, can often be

mtren8thened sufficiently to provide thv d~sirea ● priori ●stlmatem; thereby

●xpreasxn8 Lyapunov stability ●8ninst dinturbancam cf small but fin~te

●mplitude. The-e eatimatea ● re obtained via convexi~y ar8uments lnvclvil18 the

constrained ●nersy, H.

The presmt work ●stablishes sufficient condltiona for stability by

Arnold’- mzthod for planar ‘~tationalyplasma ●quilibria, as dc~cribed by the

ideal, comprcntibla, ●ultifluid pl~ttma●quationB. This probltm ●xemplifies
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for ●tability of fluids that are coupled self

conrnintently with other field,, and dimplayq the role in Arnold’s ❑ethod

played by degenerate Poisson brackets poasessi~g Cnsimirs. In the next

●ection, ●fter ● brief introdu~tion of ●nergy principles in the context of

potential flown, this role is reviewed for vertical incompressible flows in

three dimensions (Beltrami flows) ●nd in two dimensions (Arnold’s c-se). In

sec:ion 3, we study the multifluid platma problem.

11. lfO?iOCENEOUS INCOKPRESSIBLE FLOWS

11.A. Potential Flows. The problem of ●ztabliahing sufficient crmdltions f~r

atsbility in ideal incompre~sible hydrodynamics can be introduced conveniently

by recalling ● result due to Lord Kelvin. Kelvin [1869] Ghows that ideal

incompressible potential flows (~ = ~0, div y = O, y the velocity, o lts

potential) satisfy ● minimum ●nergy principle mmong divergenceless flows in a

simply connected domain DC IR3 with prescribed normal flux at the surface.

Euler’s ●quations for ●n ideal incompressible fluid are

Bty = -(y “ ~)y - gp
(lj

divy=O ,

where p is pressure, and tnc const~nt fluid densLty has been set ●qilal to

ualty. These ●quations conserve the kinetic ●nergy

E = ~$ly12 d3~ .
D

In Relvin”o ❑inimum ●nerhy principle for potential flows, the klnetkc ●nergy

is minimized tubject to the two conditions that div ~ = O In aomain D ~nd

v“n = Q(E) on the boundary ~D, where g is the unit vector nurmal to the-.

boundary and Q is the prescribed normal flux consistent with con~ervatlon of

ener8y. Theme two condition- will be imposed by choosing Lagrange multiplier

functiono, @,X, respectively. Thus, one conridera tt,? functional

‘olx
(y) = J :ily12 + O(E) div y]d3a + ~ X(~)(y ● ~ - Q(@)d2x .

D 8D
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The first variat~on of H
9,X

is, for arbitrarv variations 6x, 60, 6x,

[H
0,)(

:= DH#) ● (ay, 60, 6X) ,

=: 1( Y- go) ● 6X + 60 div y] d3x

+ ~ [(o+ x)6~ ● 9+6x(v ● n - Q)]d2x . (2)--
8D

The first variation 6H vanimhea for ●n ●quilibrium velccity, ~e, which lm ●
9,X

8tati9nary potentjal flow,

v - yo(~) = o ,-e

under the condition tmpomed by the Lagrange multipliers,

dlv ~e = O inD,

v .n-Q=O tin 8D ,
-e

provided alao O+X = O. Note that if Q s O, e.g., for ● fixed, imperme~ble

boundary, then the equati~ns AO = O in D ●nd : . ~~ = O on ~D if-ply that @

w1ll be con~tant, so v will vanish. Plainly, this ●tatic -olution ye @ O
-e

would be ● trivial ❑ inimum of H We meek nontrivial minima.
o.k.

Taking the second variation ai H leadm LO
●.X

262H
9,X

:= D2H*,x(yv) . (6y, M! 6X)2

2
= J (Ieyl + 2d0 div 6y)d3x + 2j 6X 6X ● ~ d2n

D 8D

which is pomltive definite iII the clans of diversancelasc valocity var$atlona

(div 8y = O In D) for tha prescribed flux (ox 9 D = O on 8D). So the kinetic

•ner~y haa ● conditional minimum for potantial flow. This is Kelvin’b

❑ inimum ●nergy principle.

Kalvln’n ■ ]nmum ●norsy principle Indicatts how to cattblish stability of

those stationary potential flowm. Aotins that Ho,x (y) is conscrvcd, the

followins quantity

H,,x(ey) = ~
Q’

=s (3)
D
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Letting 6v~ denote the initial value of ● velocity perturbatlcm that takes a

value 6X ●t ● certain time t later, one has

~ 16~12 d3x = ~ 16v J2 d3x > 0 . (A)
D D

Thus , Euler’s ●quation- conserve ●n ●nergy norm (3), which is an Lz norm in

15y. Ir this norm, ideal, ●t.acionary,potential flows ere stable,

the a priori ●otmate (4).

11.B Bcltrami FlowaI: Introduction of Camzmirs. For Beltraml

velocity is =2 eigenfunction of the curl operator:

curl ~ = cm , a = conat.

Tbua, ●xpressing Euler’

atz_. =Vxg.v(

a ●quations (1) ●s

//2 4 p)

according to

flova, th~

(5)

(]mj

where yJ : curl y la vorticlty, cne aces that Beltrami flows are stationary
2

states of Euler’s equations, I 12 + p ) vanlahcs. We shall aho~
●

that Beltraml flows ●xtremallze the kinetic ●neruy, constrained by the

‘“felicity”, Fh, defined ●s

=Jv 3 ,y:=-A-lcurl~,
‘h ~-”~dx

(6)

ia a finite domain DCIR3, with vanishin& normal flux at the fixed boundary,

13D. How@ver, we shall nee that this helicity ‘onatrtint will not be ●nOugh to

●stablimh She norm required CO prove stability of Beltrnmi flows In three

dimension by Ar~old”~ method. NevertbeleBs, stable Beltraml flows may still

●ximt. We wi~h to coe thir ●pparently neaative ●xample to ●mpha-ize that even

when -urcemcful, in ❑o~t csscs Arnold’s ❑etnod pcovidem condition that ● re

only aufficlent, not nccesmsry ●nd sufficient, for stabillty. Thi~ example

●lao introduce ths uoe of Casimirs, for ● PoissoII bracket in terms of the

Votticity.

upon

Euler’s ●quatiol~s●re Hamiltosian in term- of the vortlcity. Namely.

takins tne curl o: . ~ identifying v = -h
-1

curl ~ in D, one finds
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7

●nd Poiamon bracket {=,*} defined by

{F,G] =~g “ (curl &x curl ~)d3x ,
D

(B)

for functional- F(g) ●nd G(g) of y, where &Fl&M ●nd &G/~ ●re variational

derivatlvee, defined b~-

[+ F(9+ C(J)]
6F 3

C=o
‘ ;&j “ ~d x

for an ●rbitrary function, ~. The time developr?nt of ● functional F(y) thus

obeys

atF = \F,E(@] .

The heliclty Fh in (6) 1s ● Caslmlr for the Poisson bracket (8), i.e.,

the Poisson bracket {Fh,G] vanishem for every Hamiltonian G(&),

{Fh, G) = O , V G(&) .

In particular, the brcrket {Fh,E(g)’ vanishes, ●o the hellcity 1s a cnnctant

of motion for EuleI’m ●quations (7) in D, with the boundary conditions of zero

normal flux on 8D. In ●dd~tion, the Hsmiltonian formed by the sum

HA=E+~h ,A=conot,

that la,

ljq-[~. (-A-’y)+ AV ● 9](!3X (9)
D

81-0 teneratos the Euler equation- (7) via Poismm bracket (8), with E

roplac~d by HA for any value of A, which w now r-sard ●B a La8ran8e

multiplier f~r the conserved constraint, Fb“



8 Darry? D. Helm

Taking the firut ●nd second variations of the conntralned kinetic enerey

HA in (9) yields the fomlas

6HA = ~ (-A-lg+ 2&) . @d3x = J (y + 2A curl y) - 6y d3x, (lo)
D 9

with

262HA = ; [*

definition

. (-A-l@) + 2A&u ● 6yld3x , (11)

262HA = D2HA(@ m (6@2 ,

●nd with surface term having been set ●qual to zero whenever they appear due

to lnteurstion by partn, ●ccording to the boundar: conditions. From the first

variation, 6H
A’

Whit h vanishes for ●quilibrium Veloclty ye much that

v + 2A curl v = O, one see- that Beltraml flows do ●xtremallze HA, and fGr a
-e

-1
Slven Beltraml flow (5) with ei8envalue o, one hac A = (20) for the Lagrange

multiplier, A.

The second variation 62HA is indefinite

equilibrium flow is static. indeed, 62HA is

quautlty

.

Unlea- A = O, in which case the

●qual to the followlng conserved

‘A .= HA(N + &) - HA(ge) - DHA(wJ ● ~Jt

~ in the equilibrium vorticity distribution and ~ can nok be ● fmltowhere w .
perturbation. The quantity HA is connerved, since HA(Ye + %) in conserv~d

for ●ny @, HA(%) is merely u constant real n-her, ●nd DIiA(g=~ - k.
vanimhem. Wi~h the quantity HA indefinite, no nom in ●stablished and

.
constancy of MA do-s not restrict the 8rowth of perturbations.

Benides introducing Casimirr into the construction of the conserved
-

quantity H*, this ●xsmple illustrates the following point: when HA is

indofintte, no coticlusion it Indicated ~JY Arnold’- ~thod about ●ither

stability, or inotsbility. In particular, one cann~t drm the conclusion n“~

that ●ll Beltrami flows uitn u c O ●re unstmbl[, cf- Arnold l1965bl. Suck,

indefiniteneom,thoush, dogs su#8est ~loying ● complementary technique. For

●x~le, one could teak sufficient conditions for linear instability cf

Beltrami E1OWS, uain~, SSY, OCJ~l nde znmlYtis.
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11.C. Arnold’s Theorem. Arnold’s theorem uDen ●n •x~rml energy principle

to obtain stability criteria for stationary, planr, vertical flow of ●n

ideal, inc~rensible fluid. Arnold [1965a,1965b,1969] considers incompress-

ible fluid motion in ● fixed d-in Dc IR2, in the (x,Y) Pl~ne, with velocity

tangent to the boumdary, BD. In thi~ case, vorticity 18 defined by a scalmr

function w, ●u

.
curl v = z W(x,y,t) ,

.
where z is the unit vector normel to the (x}y) plane. The Poisson bracket (8)

becomes

(12)

for functionuls F,G of LU, with [.,=] being the jacobian (or the canonical

Poisson bracket), defined by

(13)

for functions f(x,y), B(x,y). Also, the ●nergy E in (7) becomes

E(W) = $ ~ ud-A-lw)dx dy ,
D

whereby the ●quation of motion results,

i3tUJ= (uJ,E) = [-A-lUW] (14)

using (12). Defining

standard formula,

the stream function U such that w = -Aw leaas to the

.

qu = [Iu,w] .

Consequently, ● certain functional dependence ●xists for ntationaq flow-

Ve,we, expressible as

*e m ;(UJ,) , (15)

sinc~ the jscobian [Ve,We] vanishem for stationary flows.
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A Cncimir for the Poisson bracket (12) is, with ●n arbitrJV f~ction

*(W) ,

F*(W) = J O(wl)dxdy . (16)
D

Oy direct coqmtation, one ●howm that FO satisfies {FO,G] = O for ●very

Hamiltonian, G,

{F*(w) ,G(w) ) = ~ d~,$fjdx dy
D

= o, V G(Lu),O(w) ,

upon unlng the properties of the Jacobian (13) ●nd integrating by parts. In

particular, the brackr. {FO,E) vaniahes ●O that F@ in (16) 1S a family of

consta~ta of ❑ otion for the two dmenslonal Euler ●quations.

Followlnr,Arnold [19691, one defines the SUM

H@(UJ) = E.w) + F*(w) , (1?)

which is ● conserved functional. Taking the fxrst and second variations of

H@(UJ) yieldo

6H@ := DH@(w) . &J = J [-A-lU+ @’(w)]hdxdy ,

D

262H@ := D2HO(W) ●
(&)2 = ~D [&u(-A-16u)+ 0“‘(w)(&u)2]dxdy

The first variaticn 6H* vanishea, provided UJ takea ●quil~brlum

matiafyin8

-A-lW@ + ~“f~e) = O .

[18!

(19)

values, b
●’

(20)

That is, fc.r stationary flows 811*vaninhes, ●nd ●(we) la determined for ●

siven ~tatitmary flow ssti~fylns (15), by

●’(ul=) ■ -i(we) . (21)



As mentioned in the introduction, ●ither negative, or positive

definiteness of the mecond variation 62H0 suggests that Lyapunov stability can

be ●stablished. Both tames are shown to be possible in Arnold [1969]. In

●ach cas--, a convexity ●rgument for the function @(uJ) is used in combination
.

with the conserved quantity HO,

.

‘o := H@(we + &u) - HO(we) - Dlf@(we) ● 6W (22)

to ●atsblish Lyapunov stability in a certain norm. Here, 6W is considered to

be a vorticity disturbance ●t a certain time, t, which has.
time zero. The quantity HO is conserved, since H@(tue + 6LU)

any &u, H@(we) is ❑erely a constant real number, and DH4(ue)

(20) .

the value 6W0 at

is conserved fcr

s 6W vanishes, by

Case 1. According to (19), the second variation 62H0 will be positive

deflnlte, provided

@“( Lue)>@ ,

since (-A-l) 1s a posltlve operator.

can be ●xpressed as

ywe
w’(we) = .J(ke) = —yA@e > 0 .

For ●xample, ilows parallel to the

~erlodlc in x have

.

By using (15j and (21), this condltlon

, V&ue = V“(y)y .we = *e(Y) , yve= V(y)y * hue = v’(y) -

Consequently, for such flows (23) becomes

w >() ,O“ ’(we(Y)) = v,”(y)

provided ●n inertial frame can be chosen so that the nign of v 1s everywhere

the same ●a tke sign of v“. Thuo, all flows having no inflection points have

52H0 positive definite.
m

Positive definiteness of 6’H0, by itself, doea not Imply Lyapunov

atabiiity. Arnold [1969] -uppliex ● convexity ●r8ument which does Frove
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Lyapunov stability criceria In

o<s:@’’(~):A<m

●nd ●xtending the definition

inequality (25), implies that,

Dbrryl D. Helm

this case. Strengthening the condition (23) to

(25)

of O(c) over the ●ntire C axis subject to

for any h,

; h2: @(~+h) - ~(~) -0’(~)h~~h2 .

Hence, acc~rding to the definition (22)

2~O(t) ~ ~ [&u(-A-z&u) + a(dw)2]dxdy > 0
D

2iiJO) : f [&uo(-A-]&uo) + WtuO)2]dxdy
D

.
●nd HO(L) = HO(0), so that

of its initial value &u
0“

the growth of

The ●ntimate

stationary flcwn with ~Ue/V&e ~ a > 0.

● dintbrbance

(27) implies

Case 2. Cousider stationary flows with ~Oe/~We < 0.

be #uch that

~ < ● c -0” ({)~Ac~

L26)

&u is bounded in terms

Lyapunov stab:llty of

LeL ● Stationary flow

(24]

●nd ●xtend the definition of 0({) over ths entire { axis, MUbJeCt to (261.
.

Then one bounds -2H@, to find

-i;@(t) ~ -( [-&(-A-l&) + ●(6w)2]dxdy ~ .( (-k~:n + a)(6w)2dxdy
D D

(29)

-2iiQ(0) : ~ [-6wo(-A-]6wO) + A(6wo)2]dxdy : j A(6u@2dxay
D D

~here k2 in the minimum ●i~envalur of minut the Laplacian (-d] in doma,n D.
min

Consequently, if

● ■ min ~~’’(c)l > k~~n

.
than perturbation Crowth iB bounded, since ●gain HO(t, = HO(0). The ●kLlmate

(29) emkablimhem Lyapunov stability of 8tatlonary flcwll wiLh

-~e/@#e ~ ● > k::n.
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III. COMPRESSIBLE HULTIFLUID PLASM STABILITY IN l’W 131?lENSIONS

The multifluid plasma (NFP) ●quations describe motion of ● system of

ideal, charged fluidu interacting together via selfccnsistenL ●lectromagnetic

forces. The fluid speciee are labeled by auperacript s (Note: no mumation

convent~on in Impomed on the superscript s in this section.); ●ach species is
u

composes of” particles of mesa m ●nd charge qs, with charge tc ❑ass ratio
s

a = qa/m~. Dynamical fluid variables are: fluid velocity ~a; ma~a density

Pa (With barer.rqic partial pressure p’ = P’(Pa) ●d specific internal ●nergy
s

● = ●s(PeJ, ●ach depending only on PSI: ●lectric fxeld ~; ●nd magnetic field

~~cctromagnetic fields

The WP ●qu~tions

;

motion equations:

conaint of dynamical Haxwell equations for the

a continuity ●quation for ●ach npecies; ●nd the HFP

(30)

)@ = f’ _ _X (Wa+ ash) - $Vlvn[2 + a’~ .+- _-
P

The static HairWell ●quations

div ~ = O ,divE-Zaapa=O , (31)
●

●lthou8h nondynamical, are compatible with the flow, i.e., if true llllLiallY

(31) will remain true under KFP dynamics.

The ttFP equationa ● re ●hewn to

Poisson bracket {F,G) defined in terms

be Hamiltonian in Spencer [1982] with

of {p’hj’ :=p’y’,~,g by

@,V&G)

6Ff - 6P8

(32)
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●nd Hamiltonian ●nergy function

E = J(Z [~ IFJS12+Pses(ps)] + #1~12 + #l~12]d3x . (33)
9 2ps

The time development of ●ny functional, F, of the ?fFP dynamical variables

obeys

iltF = {F,E} .

Horeover, one readily shows that the static tlaxwell equations (31) correspond

to the following Casimirs,

‘g =s

Each of the

uuing (32)

~(~1(-div ~ + Z as ps)d3x
s

~[~)(-div g)d3x ,

quantities GE, GB, for ●rbitrary functionB $,:, Poisson commuLes

with ●very %amlltonian H[ps, MS, ~, ~]. Thus , not only the

●quatlona of motion, but the Poisson bracket (32) itself preserves the static

Maxwell ●quatlona,

111.A ~lanar HFP Flows. We consider now planar HFP motion in some domain

Dc IR2 in the (x,yl plane. In order that such motion remain planar, each of

~he dependent variables {Pa,~s,E,B) must be functions Only of (xiY t); ~s.- and

~ ❑ust lie in the (x,y) plane; snd ~s ●nd ~ must be directed normally LO Lhe
.

plane, ●long z,

.
u s = z why,t)

.

~h~ ~l;~:~y~; ●quationn ● re

.
~tBc-z. _curl E =El z - E2 ~ ,

m 1

.
at~ m ~ X z - ~ ●’p’~’

8

atp’ E -div fj’f

.
ety’ m -(w’ + ●aB) c X y’ - ~($ly’12 + h’(p’)) + a’~ ,

(3&J

(35)
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where hs(ps) is cpecific ●nthalpy, related to pressure Ps and specific

internal ●nergy ●s by

h6 =

dhs =

For ●

reduce to

stability

s
● + P%B

(ps)-ldps .

ulngle fluid species

the equations for

criteria are proven

(36)

●nd when 1~1 ●nd B are ab8ent, these ●quations

plsnar motion Gf a barotropic fluid, whose

by Arnold’s method in Holm ●t al. [1983].

Taking the curl of the planar motion ●quation and using the continuity

(37)

●quation leads to the ●dvected quaztitites fle, the so-called “madlfied

vortlcitles”,

Jhs=o ,(Y:= (LIs + ●sB)/PO , (36)
dts

with sprcies ❑a~erial derikstive

d a
● V

d[s
‘=E+?S -

along the flow lines of ●ach ~pecleo. In view of (36) and the continuity

●quation for ●ach s, for ●very real valued function of a real variable ~s(~),

●ach f~nctxonal

F (fIs) := ~~ PsOa ((IS )dxdy (38)
0s

1~ ccnserved by the planar HFP ●quations (pro\jded the int~gral ●xiatm and the

solut.~ns ● re smooth; (lS would be created at ● discontinue*.y). Another

conserved quantity 1s the ●nergy (33; ●xpreoaed in two dlmenalons,

E “= JJ (z [*~@2 + p’ea(pm)] + $l~lz + $B2)dxdy .
D8

E]ther by direct computation from the Poi-aon bracket (32) tprclalized to

planar ❑otion, o~ by -hewing invariance under the coadjoint ●ction of the

oemidirect product group whose Lie-Poisson bracket 1s a kry ingredient

of (32), one may readily -how that each functional F (q~) In (18) 1- ●

08
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Casimir,

{F, G)=O, VG[Ps, If, ~, B] .
#

Likewise, Gausa’s Law in (31) corresponds to the following Caoimir,

GE = ~ o(~)(-div ~+ Z ●sps) dxdy . (39)
D 9

The Caslmlr G mentioned ●arlier is identically zero in two dimensions with ~
g

norml to the plane.

Equilibrium States.

in the (xmy) plane

For such station~ry

~e = - y~e

The ●quilibrium states p:, $ ~e, Be, of the system (35]

● re the stationary, two-dimeaoional, bsrotropic tfFP flows.

flowo, one hat -he relationt

div p:%: = () [Lo)

8
v ● g[@2 + h’(p:) + ●’oe]
-e

=0

Accordina to the last two ●quatimna in (LO), tht gradient vectors ~~ ●nd

y(~lglz + h’fp:) + ●’oe) ● re orthoaonsl to the ●quilibrium opecie~ v-lbclcy
8v Consequently, these two gradient vector- are collinear, provided thry or

-e “
the velocity do not v~nich. A Bufficlent c-nditlon for nuch co) jn~ar~ty 111

the plane in the functional relationship

$1:12+h’(p:) + ●I$e = k%:) , (ill]

for certain functions ks(t) , ~ 8 IR; the-e ●re called ihe Bernoulli function-

●nd (41) rtprosonto Bernoulli’- Lav for ●ach mptcies. Either ●pp]y’ng thf

operator ((?:)-]~ x ~ to (61), or -imply vector multiplying by Z the

-“ationsry ❑otion wquation,h

(62)
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gives the relation

17

(63)

where prime ‘ denotem derivative of ● function with respect to ita ntated

●rgument. Suhs~itution of (43) into the ●econd ●quation in (40] (i.e.,

Ampere’s LSWJ leada to ●nether relation for stationary flows,

(44)

Relstions (43) ●nd (4L) will be useful in ●stablishing the following

proponitionm

Proposition.

boundary and fixed

Fer smooth aolutiona with velocity fialda parallel to the

circulation on the boundm~, a ●tatfonary solutlon (<, p:,

(45)

E Be] of the Idaal planar RFP ~ations iJ ● conditional ●xtromum of the
-a ‘
total ●nergy E for fixed Caafmfra F and QB, and an abaolute ●.rtrem of

HF=~+F +~~,wher.$.~a~ 0s

@8 -

LB
Q’(c) ■ C(J ~ dt + const) ,

t2

km being th Bomoulll function of mpeclea ● .

The functional J$ in the Pwpo.lition i., explicitly,

H@’ , p’, g, B) = J-J (i[#ly’12 + #e’(P’) + b’(f)”)]
D-

● #1~12 + M* + o(~)(-div ~ + Z ●sps)] dxdy . (46)
8

After int~~ration by parts, th. variational derivative ~t$ in the dire.. on
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.
+ W’y’ - z x yo’’( (f)] ● ay’ + [B t x ●’os ’(rr)] 6B
s a

(47)

where ~ is the line ●lement ●long tL boundary 8D. For ● ~tatlonary

solution, the connected components of the baundary 8D ● re both streamlines and

equlpotential lines. Thus, Cl: ●nd @e are conatanta on 8D ano the boundary

integrals become

.
Let the variation 6ya and 6! n~tiafy S8D 6~n * ~ = O ●nd JBL 6~ .2X

g=o, respectively. Then the boundary integrals in (~J8) ●ach vanlah In

●quation (47), the dpn coefficient vaniahes for a stationary flow obeying

(41), provided that OS in related to the B~.rnoulli function ks by

k’(c) +0’(c) - {o’’(c) = o ,

om which equation (~5) in the proposition follow~. Diffetientiaticg with

respect to c i~liea C‘1 ks~(c) - #“(~) = O. Then the @@ er!d 6b

coefficients in (L7) ●ach vanish, by (43) ●nd (64), respectively, alnc~

~“(fie) = ((-?)-1 ~ k-(fi :). If O = @e, the 6E coefficient vanishea Fiuolly,

the (10coefficiel.t in LL7) vanithes, by Gsuss’- Law in (31).

The quadratic form defined by the mecond derivative of + ● t t;e

stationary solution im

+ (h’”(P:) - Ifl%:)(ap’)z + P: *“”(@6n’)21



PLASMA

The lamt term vanishen for

‘“~

STABILITY BY ARNOLD’S METHOD 19

vari~tiona tbmt ●atimfy G*u8s’s Law. Sufficient

conditions for thim quadratic form to be pomitive

(i) hs’(p:) - Iv:l%$:= ((C:)2 - Iv’1%:

8
where Ce is the sound speed of species s ior the

by P:bs’ (p:) = (C:)2, i.C., the stationary flow

(ii) (ff)-l k%:) =I$S’’JI:] > 0 ,

definite ●re:

>0, (50)

●tationaq solution, defined

IS everywhere subsonic; ●nd

(51)

i.e., the two collinear Hradient vectors ~(#lyg12 ~ hs(ps) + ssOe) ●nd ~(#)2

point in the same direction throughout the flow. For ● single, incompressible

fluid without chsrge (D n 1, p: = 1, 6ps = O, 3B = O, ~ = O), formula (49)

reduces to Arnold’s formula, equation (19) in Section 111.C, dincummed

●arlier.

A priori ●stimetes ●xpreasinR stability. Lyapuno.~ Stability criteria for

planar stationary flows of KFP in the smooth regime can be proved by

●atabliahins sufficient conditions chat imply rertaln ● priori ●stimatea

bounding perturbation growth in term of the Bernoulli functlonm k’. These

●stimates can be obtained readily by follovlng the =-me con~exity ●rgument ●s

in Thearem 1 of Helm ● t ●l. [1983] for plansr ba-ocropic flow-. Thus, one

obtains the followlng result.

Y’HBORBN. Amatma that ●ach Bernoulli fmction k’ in (41) and intomal ●no~

denalt~ function LB := psos(p’) satisfies

0 < q’ :{
-1 B

k’({) ~qs<m

where qa and Q* ●ro positive constants

O . rs : c’” (Is) : R’ < -

(52)

and 8fm.i.&lv#

(53)

with conmtantm r8,R8, and for 811 valuem of the ●~nts. Let (6X*, dpm. q,

65) h ● mmall, but fd.nito, ●mooth p-tur~tion of ● ●tatlonmw ●oJutlon (<p

P:* Q Do) and denoto Atm valuo ●t t ~ O bU (d$, 6P:, b&, MO). Let the

circulation J~D 6< 9 g and integral ~8D ~ ● s M d~ ●ach vmninh. Thor U,a

perturbation (b~m, &p’, ~, 48) of the ctatlonaw ●oJution (<, p:, !., Bo! ●t



Ie(p’y’)1 !$12
J (z[—— + (r’ - —)(aP’)z “ q%: + 6PS)(MS)21
I)m p:+&? p:+6p.

+ (6B)2 + ldE12)dxdy

(s&j

6(ps~s) = (P: + 6f3g)(VB __= + 6v’) - P*v’
r-e

~’ . (w: + ●’B + &u’ + ●st3B)/(P: + bpg) - (w: + ●’Be)/D: .
●

Just ●s in Helm ● t ●l. l19a3], Lhe proof of the Theorem proceeds by

showing thnt ● conserved functional

$(bf, bps, d~, 6B) = H#: “ $V4, P: + 6P’, E + 6~, B, + 6B)
-e

10 bounded fram below (shove) by the left (right) hsnd side of (5A). Ihe ●

priori estimate (54) then i~lias Lyap~nov stability for smooth solutions,

provided pi + 6PS remains finite ●nd lwnded ●way from zero. Under such an

●dditional hypothesis on the density, one has the following result.

corollary 1. Let ●

k=({) . ADDW tht

c < # s C-l kr’

●tationmy aolutiori ●atAafV (41) for smooth functions

(L)sQs”~ (56)
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(L’ )2
81n@<—— c &s’’(t’) ~

P’”x -

for ●ll { a IR and Is ●rch

(C:in)? Q? P:ti, P&.

(c’ 12
maxcm—. (57)

Pa ●in

o < ~s:= (c:in)2/p:x - #12/p’ < A’ < m
sin

(58)

for somu othor positivo constants Am,As. Then with MS ~mma definitions ●m in

the T,.eorem, the following ●stimetos obtain,

Imy)tz
5 {~[ + A@(tSp’)2 + q’p:=n @)2] t (6B)2 + 16~12]dxdy
D D p~ax

Is(P’y’)olz
: : (:[———--” + AU(80:)2 + QBP:ax(~:121

P’min

+ (6BO)2 + l&J2}dxdy , (59,

Corollary 1 follows imediatelv from the lheorem by replacing (53) by

(57), imposing (58), ●nd boundin~ P-.

Rem= rk. The ● priori eatimste (59) in Corollary 1 implles stability for

smooth, planar, llFPsolution-, in the sa.~seof a nom tstim~te of small, but

finite, circulation-prersnxng perturbations obeyir8 Gauss’s Law, that develop

from ● perturbed, initially sccady flow. Because of the method of proof for

the Theorem, the risht hand ●ide of the inequality (59) in Corollary 1 csn be.
uinimized by replccing it with l+lb~, 6P:, 6E4, 6BO), Thus, we hsve slcwn

●nether corollary.
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corol18Jy 2. -r the ●mm~tionm of Corolluy 1 mnd tie Thovom, the

followlng a priori ●atimetoa obtein,

+ (6B)2 + 16~12)dxdy> 0 . (60)

Uhen there is only ● single fluid species and tlectromaSnetic fzelds ●re

rnbsent, the result of the Theorem reduces to the ●ctimace in Helm ●t ●l.

[19831 for planar barotropic flow. The-e ●-timetes can break down when smooth

solutions cease to ●xist; for ●mmle. upon occurence of cavitat&on, ●ndlor

the formation of shocks irom ● init~ally-mmooth, ●tendy flew. When these

phenomen- occur, however, it i- questionable whether the barotrop~c

approximation should still be used. One could ●xclude cavitation by replaclng

(54) by ●n estimate ●s in Helm ●t al. [1983], modeling ●n ●laatic f.uld. None

of the estimates In thla section ●pply to three-dimensional phenomena. ThaL

topic is discussed in Helm ●t ●l. [1Y841.

Exampl&. Subnonlc Shear Flows. A stationary solution >f the KFP ●quations

(35) in the #trip {(X,V)CIR2 I YI ~ y ~ Y2) is d plant parallel flow ●ions

x, ●dmlttlug ●rbitrary velocity profile ~:(x,y) = (;a(y),O), ●lectrostatic

potential Oe(x.y) = ~(y), ●nd density P:(x,Y) = 6’(Y). The density profile it

mubj~ct only to the sub~onic condition (50), ●xpressible ●s

(i&y] - (;’(y))2 J G

d;’
(61)

and dqending on the barotropic relatian ~’ x PS(68). In this domain, the

independent vsriaole x can be either unrestricted on the ●ntire real line, or

pariodic. T$e fo~r case requiren that initial perturbations be sufficiently
.

integrable for ~(dv~, dp~, 6E+, (JBo) to be finite rend, thus, gtve ●

meaningful uppar bound in (60).

To determine the limits cf stability for svbsooic stationary planar tfFP

flow8, we Froceed SD follows. (i) Choose profiles ~n(y), i[y), and ~’(y),

satisfyin~ the -ubsonic condition (61). Relations (43) ●nd (6A) then imPIY

y-dependence only, for magnetic field ●nd modified vorticity: Be(X,Y) = E(Y),

ft(m,y) =fi’(y). (ii) Use Apore’n Law in the fom (46) to detemine 6(Y)
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from Gn(y) ●nd ~a(y), then capute fis(y)from its definition (36) in teru of

;8, 7, i. (iii) Solve for ●n ●xpreanion for the quantity (fig)-]k’”(fi’)

●ppearin8 in condition (52) of the stability theorem and consider ita si~,

thereby determining the limits of stmbility in temn of the profiles ~s(y),

GS(y), S(Y).

Given the profiles ~m(y), ~s(y), ●nd ~(y), one finds ~E(yJ ●nd h’(y) from

their definition

.
Lum=z -“(y) x, ;’(y;* curl v’ = - v

●
(62)

and

Oa= (P:)%: ● ●Be) = (6s(Y))-](-~’’ (Y) ‘=5(Y)) ‘: fie(Y) s
●

(63)

Equations (43) and (U) 8ive the relations

~’(y) r(y) = - : k’”(v) fig’(y)
o

●nd

ii’(y) = z ●’r(y)ay) ,
t

which determine ~(y) and (?ls)-lkm’(fis).Solvlng (66) Sives the formula

(fry !&m = . 7(Y)J’(Y)
G’ dii8/dy

(66)

(65)

(66)

-8,,v - (i?vr)~” +

;8,.
where, e.8., = d2~s(y)/dy2, ~’ =

positivity of (?)-lks’(hs) in (36) and,

●n interplay won8 velocity, dmsity ●nd

positivity condition,

;’(y~ > ~
.

-5’ ‘ (y)

dil(y)/dy, etc. Thus, control of

bcncu, of stability for MFP involves

wsnetic field profilcm, throu~h the

(67)
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Given that ●a inertial fr~ can be chosen

plans= ‘~ flowm will be stable, provided

ii’’(y)*O .

so that condition (67) holds,

(6%)

We connider ceveral camea.

Came A. In the case of neutral fluids (ss = O) ~nd stationav flows with

constant density (~’’(y) = O), positivity of (??)-lks”(fis)(67) reduces to

;’(y)/;’’’(y)> 0 . (69J

Provided an Inertlsl frame cm be chosen so that (69) holds throu8houL domain

D, one recovers Rayleigh’s criterion (24) for stability of shear flows: all

flows in thir case with no Inflection pointa in their veloclty profile are

stable.

Case B. For the case of char8ed flu~ds (as # Oj ● t constant dens~ty

(~’’(y) z O), posltivaty in (67) reduces to

->0
-am.

(70)
v - asB”

Provided ●n inertial fram? csn be chosen in which (70) holds throughout D, on?

obta~ns the following crlterlon for ctabxllty in this csse,

W’(Y) ● Aim(y) . (7]j

Case C. In the geoeral HFP case, with charged, compressible flulds, (as ~ O.

;“(Y) ● 0), when ● inertial frame ●xistm in wblch (67) holds. th~ stablllLY

condition (68) becomeD

““ * (E%%’” - ●%) + ●’i’ ,v (72)

which involves ●ll three stationary profiles.

Mote that the conditions obtain-d here by Arnold’s method •r~ sufflclont

for stability. ?hua, violation of theme conditions would be nocossary for the

omsat of inmtabalitybut not nueaaaw utd Sufficient, ●xcept in the fortunate

●vant *or@ they coincide with inmtabtlfty condttionm found by ljnear

●alymimm
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